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Abstract. The magnetic behaviour of nanoparticles of antiferromagnetic artificial ferritin has been inves-
tigated by 57Fe Mössbauer absorption spectroscopy and magnetization measurements, in the temperature
range 2.5–250 K and with magnetic fields up to 7 T. Samples containing nanoparticles with an average
number of 57Fe atoms ranging from 400 to 2 500 were studied. By analysing the magnetic susceptibility and
zero field Mössbauer data, the anisotropy energy per unit volume is found, in agreement with some of the
earlier studies, to have a value typical for ferric oxides, i.e. a few 105 ergs/cm3. By comparing the results
of the two experimental methods at higher fields, we show that, contrary to what is currently assumed,
the uncompensated magnetization of the ferritin cores in the superparamagnetic regime does not follow a
Langevin law. For magnetic fields below the spin-flop field, we propose an approximate law for the field
and temperature variation of the uncompensated magnetization, which was early evoked by Néel but has
so far never been applied to real antiferromagnetic systems. More generally, this approach should apply to
randomly oriented antiferromagnetic nanoparticles systems with weak uncompensated moments.

PACS. 75.50.Tt Fine-particle systems – 75.50.Ee Antiferromagnetics – 76.80.+y Mössbauer effect; other
γ-ray spectroscopy

1 Introduction

Natural ferritin is the iron-storage protein of animals,
plants and bacteria. It is composed of a ferrihydrite-like
core with formula (FeOOH)8(FeOH2PO4) about 7 nm in
diameter and containing up to about 4 500 Fe atoms [1],
surrounded by a 12 nm diameter multisubunit protein
shell. By a suitable chemical synthesis process, it is
possible to reconstitute the ferrihydrite ferritin core in-
side the empty protein shell (in this case obtained from
horse spleen ferritin by reductive dissolution of the na-
tive core) [2]. This way, one can monitor the amount of
iron available for the build up of the core, and a better
control of the average core size is obtained. A number of
investigations have been performed, both on natural and
artificial ferritin, using either 57Fe Mössbauer absorption
spectroscopy [3–7] or magnetization measurements [8–11].
They have shown that the magnetic structure of the Fe3+

ions in the core is probably antiferromagnetic, and that
the particles possess a (small) uncompensated magnetic
moment. However, the interpretation of the data obtained
by the two techniques is somewhat contradictory. Indeed,
on one side, the Mössbauer studies with applied magnetic
field [5–7] reveal that, for randomly oriented ferritin sam-
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ples, the Fe3+ magnetic moments in the cores remain close
to their easy axes, even in a strong field of 14 T. On the
other side, the magnetic measurements have been inter-
preted so far by assuming that the uncompensated magne-
tization follows a Langevin law, which implicitly assumes
the Fe3+ moments are free to rotate. Besides its fundamen-
tal interest, the understanding of the magnetic properties
of ferritin is of importance for NMR relaxometry [10] and
biophysical purposes as it is a good contrasting agent for
NMR imaging. The ferritin core has also recently arisen
great interest because it has been thought to be a good
candidate for the observation of quantum tunneling of the
magnetization [12], and various experimental studies, at
low temperature, have claimed to have observed this tun-
neling [13–15].

The aim of the present work is to reexamine the prob-
lem of the uncompensated magnetization in ferritin, by
comparing 57Fe Mössbauer data, both in zero field and in
applied fields up to 7 T, with magnetization data obtained
for the same samples. We show that, by taking proper
account of the crystalline anisotropy in an antiferromag-
netic structure, one obtains a coherent interpretation of
the results of the two techniques. We present a new inter-
pretation of the superparamagnetic behaviour of an en-
semble of randomly oriented antiferromagnetic particles,
in terms of a non-Langevin law for the uncompensated
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magnetization, for applied magnetic fields lower than the
spin-flop field. This approach, which was evoked by Néel
in an early work [16], has however never been considered
in the modern and quantitative magnetic investigations
of ferritin. Another motivation of our work is to examine
the influence of the mean iron content of the (artificial)
ferritin core (ranging from 400 to 2 500 Fe atoms) on the
physical properties, such as the anisotropy energy, or the
Néel temperature.

The paper is organized as follows: Section 2 contains
the description of the artificial ferritin samples, Section 3
briefly recalls the superparamagnetic behaviour of antifer-
romagnetic particles, both from the point of view of mag-
netometry and 57Fe Mössbauer spectroscopy, Sections 4
and 5 contain respectively the FC-ZFC magnetic suscep-
tibility and zero field Mössbauer measurements, and the
high field Mössbauer data; in Section 6, the influence of
anisotropy in uncompensated antiferromagnets is exam-
ined, and Section 7 reports the magnetization experiments
and the new interpretation we propose.

2 Sample characterization and experimental
techniques

In order to investigate the effect of decreasing both the
particle size and the mean number of Fe atoms per ferritin
core, the experiments were performed with a set of artifi-
cial ferritin samples with different Fe loadings. Five sam-
ples were studied, having an average iron loading ranging
from 400 to 2 500 Fe ions per ferritin core. In order to ob-
tain a good signal to noise ratio in the Mössbauer spectra,
the Mohr salt used as the starting material was prepared
with iron 95% enriched in 57Fe. The protein concentra-
tion was determined by the Lowry method and the mean
iron content by atomic adsorption analysis. In the follow-
ing, the samples will be labelled according to the mean
number of Fe atoms per core determined by this latter
method. The samples consist of a solution of artificial fer-
ritin with a concentration of about 10 mg/ml, that is ten
times smaller than the concentration of commercial fer-
ritin (about 100 mg/ml). Then, the distance between par-
ticles in the solution is about 50 nm, which corresponds
to a dipolar field of magnitude 10 mG (at saturation of
the uncompensated moments). Our samples can therefore
be considered as an ensemble of non-interacting parti-
cles. Pictures taken by transmission electron microscopy
(TEM) show the cores to be discrete and roughly spherical
in shape. Size histograms have been established by mea-
suring the diameter of 500 particles taken from different
parts of the grid. For each sample, the diameter distri-
bution is rather narrow and can be fitted to a lognormal
shape, with a mean diameter d0 ranging from 4 nm for
the particles with 400 Fe atoms per core to 5.7 nm for
the particles with 2 571 Fe atoms per core, and a stan-
dard diameter deviation σ about 0.15. Electron diffraction
patterns, performed on the particles with 2 571 Fe atoms
per core, give d-spacings corresponding to well-ordered
ferrihydrite.

The magnetization measurements were made with a
commercial SQUID magnetometer in magnetic fields up
to 5.5 T in the temperature range 2.5–250 K. For all tem-
peratures and fields, we have measured both the signal
of the solution containing ferritin and the signal of the
solution containing apoferritin (the empty protein shells)
with the same concentration. After subtraction of the sec-
ond signal from the first, we thus obtain the signal due
only to the ferritin cores. For the low field (80 G) magne-
tization measurements, both Field Cooled (FC) and Zero
Field Cooled (ZFC) branches were measured. In the Zero
Field Cooled (ZFC) procedure, the sample was cooled in
zero field from room temperature down to 2.5 K, and for
the Field Cooled (FC) branch, the sample was cooled with
a field of 80 G from room temperature to 2.5 K; in both
cases, measurements proceeded on heating.

The 57Fe Mössbauer absorption spectroscopy experi-
ments were performed both in zero magnetic field and in
magnetic fields up to 7 T applied perpendicular to the γ-
ray propagation direction, between 4.2 K and 90 K. The
Mössbauer spectra were obtained using a 57Co:Rh source,
mounted on an electromagnetic drive with a triangular ve-
locity signal. The ferritin solution was placed in a copper
holder covered with pure thin aluminium sheets, ensuring
a good thermalization. For the in-field measurements, the
ferritin solution is first frozen in zero field and therefore
there is no preferential orientation of the magnetization of
the particles.

3 Superparamagnetism of antiferromagnetic
particles

The Fe3+ ion has a saturated magnetic momentm0 =5 µB.
The magnetic structure of the ferritin cores is expected
to be antiferromagnetic, with a Néel temperature TN of
the order of a few hundred Kelvins. In zero external field,
the preferential orientation of the two antiferromagnetic
sublattices in the core is determined by the crystalline
anisotropy (“antiferromagnetic axis”). For antiferromag-
netic nanometric particles, one expects a small uncom-
pensated magnetization which may arise from the core
(presence of defects) and/or from the unpaired surface
moments of the particle [17]. Due to the strong exchange
interaction, the uncompensated moments are aligned with
the antiferromagnetic sublattice moments, except prob-
ably at the surface due to broken exchange bonds [18].
At a given temperature T below TN, the moments of the
two sublattices fluctuate by crossing the anisotropy en-
ergy barrier: this is the superparamagnetic relaxation. In
the case of an axial anisotropy, the relaxation time for the
reversal of the direction of the magnetization of a particle
with volume V is described by an Arrhenius type equation
first proposed by Néel [19]:

τ = τ0 exp
(
KV

kBT

)
, (1)

where K is the magnetic anisotropy energy per unit vol-
ume, τ0 a microscopic relaxation time usually considered
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to be a constant with magnitude 10−10–10−11 s but vary-
ing in fact with V and T [20]. Due to the particle size
distribution present in any real sample, there is a dis-
tribution of anisotropy barriers KV which, according to
equation (1), results in a broad distribution of relaxation
times. For a given measurement technique, with a charac-
teristic time τm, the blocking volume:

Vb =
kBT

K
ln(τm/τ0), (2)

defines two populations of particles: those with V > Vb

and those with V < Vb, whose magnetization fluctua-
tion time is respectively larger and smaller than τm. Us-
ing equation (1), one can also define a mean blocking
temperature:

Tb =
K〈V 〉

kB ln(τm/τ0)
, (3)

such that, for T � Tb all the particles are in the “frozen
regime” and for T � Tb all the particles are in the “su-
perparamagnetic regime”.

For magnetization experiments, the characteristic time
can be considered to be the measurement time τχ, which is
about 100 s. In low fields, and for the superparamagnetic
regime, Néel has shown that the magnetization is the sum
of two contributions [21]:

M(H,T ) = χAFH +Mnc(H,T ), (4)

where χAF is the susceptibility arising from the canting of
the two antiferromagnetic sublattices, andMnc is the mag-
netization due to the uncompensated moments. At T = 0
and in the case the magnetic field is perpendicular to the
antiferromagnetic axis, χAF = χ⊥ which, in the standard
molecular field theory, is given by: χ⊥ = M0/HE, M0 be-
ing the magnetization of a sublattice and HE the exchange
field. In the low field limit, the uncompensated magneti-
zation follows a Curie law, irrespective of the strentgh of
the anisotropy [21]. At higher fields, the choice of an ex-
pression for Mnc(H,T ) is not a trivial problem, and an
important issue of the present work is the determination
of the best approximation for the field and temperature
dependence of the uncompensated magnetization in anti-
ferromagnetic particles.

The characteristic Mössbauer time is the Larmor pe-
riod τL associated with the magnetic hyperfine interac-
tion. For 57Fe, it is of the order of 5× 10−9 s. In the case
of magnetic ordering of the Fe3+ ions, there is a mag-
netic hyperfine field Hhf at the nucleus, proportional to
the Fe3+ moment and directed opposite to it. If the fluctu-
ation time τ of the magnetization (and hence of the hyper-
fine field) is longer than τL, the Mössbauer spectrum is a
six-line hyperfine field pattern; if it is smaller than τL, the
Mössbauer spectrum is a two-line quadrupolar pattern. In
real systems, due to the broad distribution of τ values,
a zero field pattern consists of a superposition of mag-
netic and quadrupolar subspectra, in a sizeable tempera-
ture range. When a magnetic field is applied, each nucleus

Fig. 1. Thermal variation of the FC and ZFC magnetic suscep-
tibility in the artificial ferritin sample with a mean Fe loading
of 410 atoms per core, measured in a field of 80 G. The solid
lines are fits using to equation (7) and a Gaussian distribution
of µnc values.

experiences an effective field Heff , which is the vectorial
sum of the applied field H and of the hyperfine field Hhf :

Heff = H + Hhf . (5)

If φ is the angle between the γ-ray propagation direction
and the effective field direction, the intensity ratios of the
outer to middle to inner pairs of lines of the Mössbauer
sextet are given by:

3(1 + cos2 φ) : 4 sin2 φ : (1 + cos2 φ). (6)

If the effective field is aligned perpendicular to the γ-ray
direction, the intensity ratios are 3:4:1, and for a random
orientation of the effective field, the intensity ratios are
3:2:1.

4 Low field susceptibility and zero field
Mössbauer experiments

The two FC and ZFC branches of the magnetic suscepti-
bility for the particles with 410 Fe atoms per core, mea-
sured in a field H=80 G, are represented in Figure 1.
The signal is almost entirely due to the uncompensated
moments, the antiferromagnetic susceptibility being very
weak as will be shown in Section 7.

The shape of the curves is typical of an ensemble
of non-interacting relaxing moments with a distribution
of anisotropy barriers [22]. The peak temperature of the
ZFC curve for the particles with 410 Fe atoms per core
is Tpeak ' 7.5 K, and the irreversibility temperature at
which the FC and ZFC branches join is Tirr ' 15 K.
To interpret these curves, we follow here the model of
reference [22]. Assuming that, for a given particle vol-
ume, the uncompensated moment µnc is a known function
of V , the thermal variation of the FC and ZFC magnetic
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moment writes:

mnc(T ) =
H

3kBT

∫ Vb(T )

Vmin

µnc(V )2f(V )dV

+ η
H

3K

∫ Vmax

Vb(T )

µnc(V )2 f(V )
V

dV, (7)

where f(V ) is the log-normal volume distribution func-
tion, Vb(T ) the blocking volume associated with τχ, and
with τ0 = 10−11 s, and η=0 for the ZFC branch and ln τχ

τ0
for the FC branch. However, in antiferromagnetic parti-
cles, the relationship between volume and uncompensated
moment is not well known. The most probable is that,
for a given volume, there is a distribution of uncompen-
sated moment values. According to an argument due to
Néel [17], the mean value of this distribution is propor-
tional to Np, where N is the number of Fe atoms in the
particle and p = 1/2, 1/3 or 2/3 in the case respectively
of a random distribution of the uncompensated moments
in the volume, at the surface, or in the presence of regular
“active” (ferromagnetic) planes at the surface. It appears
that the fit of the experimental FC and ZFC curves using
equation (7) is not very sensitive to the particular shape
of the distribution of uncompensated moments, nor to the
choice of a particular p value. The solid lines in Figure 1,
which reproduce quite well the experimental data, were
obtained by introducing a Gaussian distribution of µnc

values into expression (7).
The mean value of this distribution is taken as: 〈µnc〉 =

m0u
√
N (assuming the Fe atomic density n = N/V is

constant for a given particle set), and its standard devi-
ation as σnc = 0.4〈µnc〉. The distribution is restricted to
positive µnc values. The fitted value of the proportion-
ality parameter u is in the range 0.8–1 for the different
particle sets, and the standard deviation of the diame-
ter distribution was kept at the value σ = 0.15 obtained
from the size histograms. This choice of a N

1
2 law for the

mean µnc value corresponds to a volumic random distri-
bution of the Fe atoms bearing the uncompensated mo-
ments but, as emphasized before, the data do not allow
us to exclude the presence of uncompensated moments at
the surface. Nevertheless, these fits allow the anisotropy
constant K to be determined: we find that K lies in the
range 3–6× 105 ergs/cm3 for the different particle sets,
with a tendency to increase as the particle size decreases.

In Figure 2 is represented, for each sample, the be-
haviour of the ZFC magnetization as a function of temper-
ature (the fit is shown as a solid line only for the particles
with 2 571 Fe atoms per core). The peak temperature in-
creases with the particle size, and it varies approximately
linearly with the mean barrier energy K〈V 〉, as can be
seen in Figure 3. As, in antiferromagnetic particles, the
shape anisotropy is very small [23], this linear correlation
is expected if the volumic anisotropy dominates over the
surface anisotropy. Indeed, in this case, Tpeak can be shown
to be proportional to the blocking temperature Tb [22,24]:

Tpeak = g(σ)Tb, (8)

Fig. 2. Thermal variation of the magnetization of artificial
ferritin samples with different Fe loadings (the figure near each
curve represents the mean number of Fe atoms per particle)
upon warming in a field of 80 G after cooling in zero field
(ZFC curves). The fit using equation (7) (solid lines) is shown
only for the sample with a loading of 2 571 Fe atoms per core.
The magnetization is expressed in emu per mg of protein.

Fig. 3. Dependence of Tpeak of the ZFC curves on the mean
anisotropy energy in artificial ferritin samples.

where g(σ) is an increasing function of the standard di-
ameter deviation σ with g(σ → 0) = 1. As σ is relatively
constant for the different particle sets, the peak tempera-
ture must be proportional to the mean anisotropy barrier
owing to equation (3).

For all samples, the FC curve joins the ZFC curve
above an irreversibility temperature which is about twice
the peak temperature; therefore, for all particle sizes, the
superparamagnetic regime associated with the magnetiza-
tion measurement time occurs above 30 K.

Representative 57Fe Mössbauer absorption spectra
in zero field for the particles with 410 Fe atoms per
core are shown in Figure 4. At 4.2 K, a static mag-
netic hyperfine pattern is observed with a hyperfine field
Hhf ' 490 kOe, identical for all particle sets. As tem-
perature increases, the quadrupolar doublet progressively
replaces the six-line magnetic pattern as the superpara-
magnetic fluctuation time of more and more particles be-
comes smaller than τL, i.e. as the blocking volume given
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Fig. 4. 57Fe Mössbauer absorption spectra at selected temper-
atures in zero field in the artificial ferritin sample with a mean
Fe loading of 410 atoms per core.

Fig. 5. Thermal variation of the relative intensity of the
quadrupolar doublet in the artificial ferritin sample with a
mean Fe loading of 410 atoms per core. The solid line is a
fit using equation (9). The blocking temperature is 22 K.

by equation (2) associated with the characteristic time τL
becomes smaller. The spectra were fitted to a superposi-
tion of a quadrupolar hyperfine spectrum and of magnetic
hyperfine spectra with a distribution of hyperfine fields
(histogram).

The thermal variation of the relative intensity fp(T )
of the quadrupolar doublet derived from these fits is
shown in Figure 5. This “paramagnetic fraction” can
be calculated in the frame of Néel’s model of thermally

activated fluctuations:

fp(T ) =
1
〈V 〉

∫ Vb(T )

Vmin

V f(V )dV, (9)

where Vb(T ) = kBT
K ln τL

τ0
and τ0 = 10−11 s. The para-

magnetic fraction is independent of the values (or distri-
bution) of the uncompensated moments as long as one
neglects the possible (but unknown in antiferromagnets)
dependence of τ0 on µnc. For all particle sets, the thermal
variation of fp is well reproduced using equation (9) (solid
line in Fig. 5), with an anisotropy constant close to that
derived from the fit of the FC-ZFC susceptibility curves.
The blocking temperature, defined as the temperature for
which half of the particles are in the superparamagnetic
regime, increases with the particle mean size. For all iron
loadings, all the particles are in the superparamagnetic
regime above 80–100 K.

5 High-field Mössbauer experiments

According to the zero field Mössbauer data, for all par-
ticle sizes, the fluctuations of the magnetization at 4.2 K
are slow with respect to the hyperfine Larmor frequency,
and they are fast at 90 K. In-field Mössbauer spectra at
these temperatures have been recorded in natural ferritin
and haemosiderin in reference [5]. We repeated these mea-
surements in our artificial ferritin samples to try and de-
tect the influence of the particle size on the orientation
of the magnetic moments in the frozen and paramagnetic
regimes when a magnetic field up to 7 T is applied. We ac-
tually found that there is no drastic qualitative change of
the in-field spectra for the different particle sets, and our
data are similar to those recorded in natural ferritin. We
therefore only present the spectra for the particles with
410 Fe atoms per core, and our interpretation follows the
same lines as that made in reference [5].

5.1 Spectra in the frozen regime (T = 4.2 K)

The spectra at 4.2 K for fields of 3 T and 7 T in these par-
ticles are shown in Figure 6. They are resolved six line hy-
perfine spectra, analogous to the zero-field spectrum (see
top of Fig. 4). The intensity ratios of the pairs of lines re-
main close to 3:2:1, even at 7 T, which means that the field
does not drastically modify the orientations of the individ-
ual Fe3+ moments with respect to those in the randomly
oriented zero-field configuration. The spectra were then
fitted assuming random orientations of the static hyper-
fine field Hhf , with fixed magnitude. For a given angle θb

between Hhf and the applied field, the magnitude of the
effective field Heff = H + Hhf experienced by the nucleus
is given by:

Heff = {(Hhf cos θb +H)2 +H2
hf sin2 θb}

1
2 . (10)

The orientational disorder of Hhf yields then a small dis-
tribution of the magnitude of Heff . It entirely accounts



422 The European Physical Journal B

Fig. 6. 57Fe Mössbauer absorption spectra in the frozen regime
(4.2 K) in the artificial ferritin sample with a mean Fe loading
of 410 atoms per core, with magnetic fields of 3 T and 7 T
applied perpendicular to the γ-rays propagation direction. The
solid lines are a fit to a model with random orientation of the
hyperfine fields.

for the broadening of the lines with respect to the zero-
field linewidths, which is the most visible at 7 T.

As seen in Figure 6, the model of a random orientation
of the moments satisfactorily reproduces the shape of the
Mössbauer spectra, except for a small misfit of the shape
of the intermediate pair of lines. This implies that, up to
a field of 7 T, the magnetic moments of the Fe3+ ions
remain close to the antiferromagnetic axis in our ferritin
samples at 4.2 K. The same qualitative conclusion can be
drawn from the 14 T spectrum in horse spleen ferritin
of reference [7]. In the following, we will label this mo-
ment configuration as the “random magnetic orientation”
configuration.

5.2 Spectra in the superparamagnetic regime
(T = 90 K)

In the superparamagnetic regime and in zero applied field,
the fast fluctuations of the hyperfine field smear out the
magnetic hyperfine structure. At 90 K, the zero field spec-
trum is a quadrupolar doublet identical with the main
component of the spectrum at 35 K shown at the bottom
of Figure 4. If a field is applied, the shape of the spectra,
shown in Figure 7, changes, and at 5 T a six line hyperfine
field pattern is distinguishable, but with large broaden-
ings. In order to interpret the spectra, we will assume that
a dynamic “random magnetic orientation” model holds at
90 K, i.e. that the moments fluctuate along or close to
the antiferromagnetic axis. Our analysis follows here that
of reference [5]. For a given orientation θb of the antifer-
romagnetic axis and a given value of the uncompensated
moment, the energies of the two particle states with “up”
and “down” orientations of the uncompensated moment
are separated by a Zeeman splitting:

∆Ez = 2µnc(V )H cos θb. (11)

Fig. 7. 57Fe Mössbauer absorption spectra in the superpara-
magnetic regime (T = 90 K), in the artificial ferritin sample
with a mean Fe loading of 410 atoms per core, with magnetic
fields of 2 T and 5 T applied perpendicular to the γ-rays prop-
agation direction. The solid lines correspond to fits using the
dynamic “random magnetic orientation” model (see text).

At a given Fe site, the hyperfine fields associated with
each energy level are opposite, resulting in a thermally
averaged hyperfine field:

Hhf(T, V ) = H0
hf(T ) tanh

[
µnc(V )H cos θb

kBT

]
, (12)

where H0
hf(T ) is the local hyperfine field. The values of

Hhf(T, V ) for a given particle set are therefore distributed
due to both the distribution of µnc(V ) values and to the
random distribution in θb values.

The fits of the in-field spectra with this dynamic “ran-
dom magnetic orientation” model, like those of the FC-
ZFC curves, are rather insensitive to both the assumption
made about the distribution of uncompensated moment
values and the value of the exponent p. For the fits shown
as solid lines in Figure 7, we used the same distribution
of uncompensated moments as for the fits of the FC-ZFC
curves, i.e. a truncated Gaussian shape with a mean value:
〈µnc〉 = m0u

√
N . We find that the parameter u is 0.4–0.5

for the lowest fields, and that it decreases as the field
increases. The good reproduction of the spectral shape,
especially if one considers that u is the only adjustable
parameter, indicates that it is realistic to consider that
the individual moments, and hence the sublattice mag-
netizations, fluctuate along or close to the antiferromag-
netic axis at 90 K. The fact that the mean uncompensated
moment found here is about twice smaller than that de-
rived from the FC-ZFC curves probably originates from
the roughness of the assumption of a Gaussian distribu-
tion of µnc values. The decrease of u as the field increases,
also observed in reference [5], is probably due to the fact
that the “random magnetic orientation” model starts to
break down at the higher fields, as will be discussed in the
next section. The values obtained for u at the lowest fields
(∼0.5) are similar to those derived from the magnetization
measurements described in Section 7.
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6 Interplay of the exchange, Zeeman
and anisotropy energies in uncompensated
antiferromagnets

Before proceeding with the experimental results of the
magnetization measurements and their interpretation, we
will examine the effect of a magnetic field on an uncom-
pensated antiferromagnetic particle, and determine the
field range for which the “random magnetic orientation”
configuration is expected to be a correct approximation.
For a fully compensated antiferromagnet, the relevant
threshold field is the so-called spin-flop field which writes:
Hsf '

√
2HAHE, where HE is the exchange field and

HA = K
M0

the anisotropy field, M0 being the magneti-
zation of one sublattice [25]. When the applied field H
is aligned along the antiferromagnetic axis, the sublattice
magnetic moments rotate to a direction perpendicular to
it for H = Hsf . For a particular orientation θb of the
antiferromagnetic axis with respect to H, the T = 0 equi-
librium direction θ of the sublattice moments, in the limit
H/HE � 1 and HA/HE � 1, is given by [26]:

cos2 θ =
1
2

+
cos2 θb − 1+x2

2√
(1 + x2)2 − 4x2 cos2 θb

, (13)

where x = H/Hsf . For all initial orientations, a crossover
to a “quasi spin-flop” configuration, where the equilibrium
orientations are close to 90◦, occurs for H > Hsf and, for
lower fields, the equilibrium position θ remains close to
the initial orientation θb.

In order to investigate the effect of the uncompensated
moment, we will follow a model developed by Mørup [27].
For a particle with volume V and “degree of uncompen-
sation” α = µnc/M0V , the energy of an antiferromagnetic
particle is given by:

E(θ, θb) = M0HE[−(1 + α) +
1
2
β2 sin2 θ

+ αβ cos θ + κ(1 + α) cos2(θ − θb)], (14)

where β = H/HE and κ = HA/HE. This expression is
valid for β � 1, κ � 1 and when the “canting angle” 2ε
of the two sublattices has its equilibrium (small) value:
2ε = β sin θ. Mørup has shown that the spin-flop field in
the presence of an uncompensated moment is enhanced
with respect to Hsf [27]:

Hnc
sf =

1
2
αHE +

√
1
4
α2H2

E +H2
sf . (15)

In our ferritin samples, using for instance the values for the
sample with 410 Fe atoms per core: K ' 5×105 ergs/cm3

and the atomic density: N ' 1.2 × 1022 Fe3+/cm3, the
anisotropy field is: HA ' 0.18 T. The exchange field is
more difficult to estimate because various values for TN

have been given in the literature. We will take here our
estimation of the Néel temperature, which we show is close
to 500 K for all particle sizes (see Sect. 7). Using the sim-
ple molecular field result: kBTN = 1

3g(S + 1)HEµB, one

Fig. 8. Variation of the equilibrium orientation θ of the sublat-
tice magnetizations in an uncompensated antiferromagnet as
a function of the orientation θb of the antiferromagnetic axis
with respect to the applied field, for HE = 320 T. The ratio
of the uncompensated moment to the sublattice magnetic mo-
ment is: α = 0.03. The curves (solid lines) are calculated for
different values of the applied field H ranging from 3 T to 30 T.
The dashed line is the curve θ = θb.

obtains an exchange field HE ' 320 T. As to the val-
ues of the degree of uncompensation α, they are prob-
ably distributed within a given particle set; using as a
reasonable estimate of the mean uncompensated moment:
〈µnc〉 = 0.5m0

√
N , we find that the mean value of α

ranges from 2% for the biggest particles to 5% for the
smallest ones.

In Figure 8, we show the curves giving the T = 0
equilibrium orientations θ as a function of the initial ori-
entation θb, for the representative value α = 0.03, and for
different values of the applied field H. For this α value,
the spin-flop field is: Hnc

sf = 16.6 T. For fields below 7 T,
Figure 8 shows that the equilibrium orientation θ does not
strongly depart from θb for all initial orientations. Thus
the T = 0 “random magnetic orientation” model is seen
to be a good approximation for fields lower than the max-
imum field of our experiments (7 T), thus justifying the
use of this approximation to account for the T = 4.2 K in-
field Mössbauer spectra. This model starts to break down
for a field around 7 T and, above the spin-flop field, the
equilibrium θ value is seen to be quasi independent of θb

and growing towards 90◦ as the field is further increased.
For a fully compensated antiferromagnetic particle, the

energy profiles present two equally deep potential wells,
separated by π, corresponding to the invariance of the sys-
tem by inversion of the two sublattice moments. When the
particle possesses an uncompensated moment, this sym-
metry is broken and the energy profiles become asymmet-
rical, as shown in Figure 9 which represents E(θ, θb = 50◦)
from equation (14) for different applied fields up to 15 T,
and for α = 0.03, HE = 320 T and HA = 0.18 T. The
two potential wells are still clearly present for fields below
5 T, the energy difference between the lowest points in
each well being essentially the Zeeman splitting given by
equation (11). At higher fields (7–10 T), the less shallow
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Fig. 9. Energy profile for an uncompensated antiferromagnet,
for θb = 50◦, a degree of uncompensation α = 0.03 and an
exchange field HE = 320 T, for different values of the applied
field. The other parameters correspond to the particles with
410 Fe atoms per core.

well is somehow smeared out and it appears anew when
the field is further increased.

The field range where only one potential well is present
is such that the Zeeman energy associated with the un-
compensated moment µncH is larger than the anisotropy
energy KV , but smaller than the Zeeman energy as-
sociated with the canting of the two antiferromagnetic
sublattices, χ⊥H2. When α is not too small, this yields
the approximate boundaries: HA/α < H < αHE, i.e. this
region lies between 6 and 9.6 T for α = 0.03. At low
fields (H < HA/α), the positions of the two wells remain
close to θb for the shallowest (see Fig. 8) and π − θb for
the other. Therefore, in this field region and in the su-
perparamagnetic regime, the dynamic “random magnetic
orientation” model, where the uncompensated moment is
taken to fluctuate along the antiferromagnetic axis, is a
fairly good approximation. At higher fields, the positions
and shape of the potential wells start to be strongly mod-
ified, which probably accounts for the difficulty of coher-
ently reproducing the Mössbauer spectra at 90 K using
this model.

7 Isothermal magnetization experiments

Isothermal magnetization measurements have been per-
formed in the superparamagnetic regime, between 35 K
and 250 K, for fields up to 5.5 T. Representative curves are
shown in Figures 10 and 11, for the particles with 982 Fe
atoms per core. For a given temperature, the magnetiza-
tion increases with the field, without saturating, and, for
a given field, it decreases with increasing temperature, as
observed in references [8–11].

For these antiferromagnetic particles, the magnetiza-
tion can be thought to arise from two contributions, as ex-
plained in Section 3: a linear term χAFH, where χAF is the
powder antiferromagnetic susceptibility and accounts for
the weak canting of the two sublattices, and another term

Fig. 10. Low field part of the isothermal magnetization at 35 K
and 80 K in the artificial ferritin sample with a mean Fe loading
of 982 atoms per core. The solid lines are fits with the “random
magnetic orientation” model (see text), and the dashed lines
represent the fits with the Langevin model. The inset shows
the G(x) function (see text) and the Langevin function L(x).

Fig. 11. Magnetization curves in the artificial ferritin sam-
ple with a mean Fe loading of 982 atoms per core. The solid
lines are obtained by using the “random magnetic orientation”
model (see text, Eq. (18)) The inset shows the thermal varia-
tion of χAF in the same sample.

due to the uncompensated moments. In the previous mag-
netization studies of ferritin quoted above, this latter con-
tribution has been interpreted using the Langevin model.
However, for such low fields, the discussion presented in
Section 6 shows that the uncompensated moments must
be considered as fluctuating essentially along the antifer-
romagnetic axis, which is confirmed by the analysis of the
in-field Mössbauer spectra at 90 K. This is not compati-
ble with the Langevin model, which assumes the moments
are free to rotate. In this respect, weakly uncompensated
antiferromagnetic particles strongly differ from ferro- or
ferrimagnetic particles. In the latter, the anisotropy en-
ergy is easily overcome by the Zeeman energy and the
Langevin model is a good approximation, although de-
viations from it have been observed at low temperature
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and interpreted using a full Boltzmann calculation of the
magnetization (see for instance Ref. [28]). In randomly
oriented antiferromagnetic particles, a calculation of the
total magnetization along the same lines is much more dif-
ficult because it involves four variables, i.e. two positional
angles for the each of the two sublattices. Therefore, as
a low field approximation, we interpret the contribution
of the uncompensated moments in the superparamagnetic
regime using the dynamic “random magnetic orientations”
model, assuming that they fluctuate between two antipar-
allel directions along the antiferromagnetic axes. The un-
compensated moment, for a given particle volume and a
given orientation, is then described by a hyperbolic tan-
gent function similar to the expression for the hyperfine
field (Eq. (12)), and the measured moment is obtained by
integration over the random directions of the antiferro-
magnetic axis:

mnc(T, V ) = µnc(T, V )G
[
µnc(T, V )H

kBT

]
, (16)

with the function G(x) defined by:

G(x) =
1
2

∫ π

0

dθ sin θ cos θ tanh(x cos θ). (17)

The G(x) function is plotted in the inset of Figure 10 to-
gether with the Langevin function L(x); G(x) saturates
at the value 1/2, whereas the Langevin law saturates at
unity. The isothermal magnetization curves have been fit-
ted with this model of dynamic “random magnetic orien-
tation”, according to the law:

M(T,H) = χAF(T )H

+
1
〈V 〉

∫ Vmax

Vmin

µnc(T, V )f(V )G
[
µnc(T, V )H

kBT

]
dV, (18)

where f(V ) is the lognormal volume distribution func-
tion. We chose to describe the uncompensated moments
by their mean value: µnc(T, V ) = m0u(T )

√
N , where u(T )

accounts for the thermal variation of a Fe3+ moment.
In Figure 10 are represented the low field parts of the
isothermal magnetization curves in the particles with 982
Fe atoms per core, at 35 K and 80 K, together with the
fits of the data using the G(x) function (solid line) and
the Langevin function (dashed line) with the same vol-
ume distribution. It is clear that the fit using the “random
magnetic orientation” model gives a better account of the
M(H) curvature at low fields than does the Langevin fit,
the improvement being more pronounced at low temper-
ature. The complete field and temperature variation of
the magnetization in the particles with 982 Fe atoms per
core is shown in Figure 11, the solid lines representing
the fit using the “random magnetic orientation” model
(Eq. (18)).

These fits are very satisfactory in the whole field range,
and the values for u are about 0.6 (close to those obtained
in the Mössbauer spectra at 90 K at the lowest fields)
and slowly decrease as temperature increases. We empha-
size that the description of the thermal and field variation

of the uncompensated magnetization in the superparam-
agnetic regime using the G(x) function lies on stronger
physical grounds than that using a Langevin function.
The upper bound of the field range where this approach
is valid, as discussed in Section 6, is approximately HA/α,
i.e. it is close to the maximum field (5–6 T) used so far
in magnetization studies of ferritin. Above this field, the
uncompensated magnetization starts to decrease and van-
ishes when the field reaches the spin-flop threshold, as the
uncompensated moments fluctuate along a direction close
to perpendicular to the applied field. The G(x) function
has been evoked by Néel [16,25] in his studies of antiferro-
magnetic particles: he applied it to calculate the thermore-
manent magnetization at the blocking temperature and
stated that it was the correct description of the uncom-
pensated magnetization in the limit of strong anisotropy.
This fact has also been noted by Bean [29] for the mag-
netization of ferromagnetic fine powders. We showed here
that, in weakly uncompensated antiferromagnetic parti-
cles (i.e. with a degree of uncompensation of a few per-
cent), the G(x) function yields a correct description of
the magnetization even for finite and rather small values
of the anisotropy energy, like those found in ferric oxides,
for fields up to 5–6 T. This is finally a consequence of the
very large value of the exchange field, which yields a large
spin-flop field.

The thermal variation of the mean uncompensated mo-
ment derived from our fits of the M(H) curves presents
a small but significant decrease as temperature increases
from 35 K to 250 K, for all particle sizes. Using an anti-
ferromagnetic magnon law: µnc(T ) = µnc(0)(1−αT 2), the
experimental µnc(T ) curves can be extrapolated to zero in
order to yield an estimation of the Néel temperature. We
find that TN is close to 500 K, and that it is practically
the same for all particle sets. This absence of dependence
of TN on the mean particle size is probably due to the
fact that the distance between “active” reticular planes,
which determines the strength of the superexchange inter-
action, is independent of the particle size. The TN value
we obtain is roughly two times larger than early estima-
tions [3,4], but is in good agreement with more recent
determinations [5,9,10] in natural ferritin.

The antiferromagnetic susceptibility χAF(T ), shown
in the inset of Figure 11 for the particles with 982 Fe
atoms per core, decreases with increasing temperature,
whereas the bulk powder antiferromagnetic susceptibility
is expected to increase on heating. A mechanism for the
thermal decrease of χAF has been proposed by Néel [25],
by considering the reduced exchange field of the super-
ficial Fe layers, but it is difficult to say whether it is
responsible for the thermal decrease of χAF we observe
in the ferritin particles. The T = 0 value of χAF, de-
rived from the magnetization curves at 2.5 K (not shown
here), amounts to a few 10−4 emu/cm3 for all particle
sets. In the simple molecular field model, the expression
for the powder T=0 antiferromagnetic susceptibility is:
χAF(T = 0) = 2

3χ⊥ = 2
3 (M0/HE). Using the estimated

exchange field value HE = 320 T, we find that, for each
particle set, the calculated χAF(T = 0) is smaller than
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the experimental value by a factor of about 3. Néel showed
that the susceptibility of antiferromagnetic particles hav-
ing an even number of “active” reticular planes (i.e. no net
magnetic moment) can be enhanced by a factor 2 or more
with respect to the bulk susceptibility, and that this is a
surface effect visible in very small particles [30]. He called
this behaviour “superantiferromagnetism”. We think that
this mechanism is effective for such particles even in the
presence of a small uncompensated moment, and that it
is responsible for the observed large value of the antifer-
romagnetic susceptibility. The superantiferromagnetic be-
haviour is confirmed by high field (30 T) magnetization
measurements we performed at 2.5 K in natural ferritin,
which will be the subject of a future publication [31].

At this stage, we would like to comment on the ob-
servability of effects linked with surface atoms in antifer-
romagnetic particles. Due to the small size of our particles
(4–6 nm), an important fraction of Fe atoms (around
40%) lie at the surface, and their properties (anisotropy,
exchange field) are likely to be somehow different from
those of the core atoms. For instance, in ferro- or ferri-
magnetic systems, the observed lack of full alignment of
the magnetic moments with the applied field is charac-
teristic of nanoparticles and is generally attributed to the
different behaviour of surface atoms [18,32]. In antiferro-
magnetic particles in moderate magnetic fields, the situa-
tion is different because the dominant configuration is an
almost random orientation of the moments with respect
to the field. Then, effects linked with surface moments
are much more difficult to evidence experimentally and to
distinguish from those due to core moments (see however
Ref. [33]). So, although the properties of surface atoms
may be different from those of the core atoms in our arti-
ficial ferritin particles, we could not detect their effects in
our experimental data, except for the superantiferromag-
netic behaviour mentioned above.

8 Conclusion

We performed 57Fe Mössbauer absorption spectroscopy
and magnetization measurements in antiferromagnetic ar-
tificial ferritin particles, with mean Fe loadings rang-
ing from 400 to 2 500 atoms, in the temperature range
2.5–250 K and with magnetic fields up to 7 T. In zero or
very low field, the dynamics of the sublattice magnetiza-
tion of the ferritin particles obeys classical superparam-
agnetic relaxation in the thermal activation regime. The
value of the anisotropy energy per unit volume K could
be determined from the FC-ZFC susceptibility curves
and from the thermal variation of the Mössbauer su-
perparamagnetic fraction. The values obtained by both
techniques are in good agreement and are in the range
3–6 × 105 ergs/cm3, typical for ferric oxides or hydrox-
ides, with a tendency for K to increase as the particle size
decreases. By comparing the data obtained by Mössbauer
spectroscopy and by magnetometry in moderate magnetic
fields up to 7 T, we propose a new interpretation of the
field and temperature behaviour of the uncompensated
magnetization in the superparamagnetic regime. We show

that it is better described by a “random magnetic orienta-
tion” model, where the uncompensated moments fluctuate
along the antiferromagnetic axis, than by the usually as-
sumed Langevin law. This behaviour is described by the
universal function:

G(x) =
1
2

∫ π

0

dθ sin θ cos θ tanh(x cos θ). (19)

To our knowledge, this law has never been applied to
the interpretation of data in antiferromagnetic particles,
although Néel had noticed that it should be the cor-
rect description of the thermal and field variation of
the uncompensated magnetization in the limit of large
anisotropy [25]. We think this non-Langevin behaviour
actually holds for usual values of the anisotropy energy,
and it should be valid not only in ferritin, but also in
other weakly uncompensated antiferromagnetic particles,
at least in moderate magnetic fields. As the field is in-
creased towards the spin-flop field (10–20 T) and above,
the “random magnetic orientation” picture breaks down,
as the magnetic moments progressively reorient perpen-
dicular to the applied field and the superparamagnetic
uncompensated magnetization vanishes.

We could also estimate the Néel temperature in our
artificial ferritin samples by following the decrease of the
mean uncompensated moment in the temperature range
35–250 K; we find that TN is essentially independent of
the mean particle size, and that it is close to 500 K, in
agreement with other recent estimations.

The authors are grateful to Dr E. Vincent and Dr G. LeBras,
from the Service de Physique de l’État Condensé (CEA
Saclay), for their help with the SQUID measurements.
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